
With through drive for single and multiple pumps

Swash plate type for open circuit

Technical Features Low noise level

- Fast response
- Service-friendly
- High self-priming speed
- Compact design
- Through drive for 100 % nominal torque

General Information

Fluid recommendations

Premium quality hydraulic mineral fluid is recommended, like HLP oils to DIN 51524 (part 2 & 3) or ISO6743/4 (HM & HV). Brugger-value recommended to be 30 N/mm² minimum for general application and 50 N/ mm² for heavily loaded hydraulic equipment and fast cycling machines and/or high dynamic loads, measured in accordance with DIN 51 347-2. See also Document MSG30-3248/UK Parker Hydraulic Fluids.

Viscosity

The normal operating viscosity should range between 16 and 100 mm²/s (cSt). Max. start-up viscosity is $1000 \text{ mm}^2/\text{s} \text{ (cSt)}.$

Filtration

For maximum pump and system component functionality and life, the system should be protected from contamination by effective filtration.

Fluid cleanliness should be in accordance with ISO classification ISO 4406:1999. The quality of filter elements should be in accordance with ISO standards.

General hydraulic systems for satisfactory operation: Class 20/18/15, according to ISO 4406:1999 Recommended cleanliness for maximum component life and functionality: Class 18/16/13, according to ISO 4406:1999

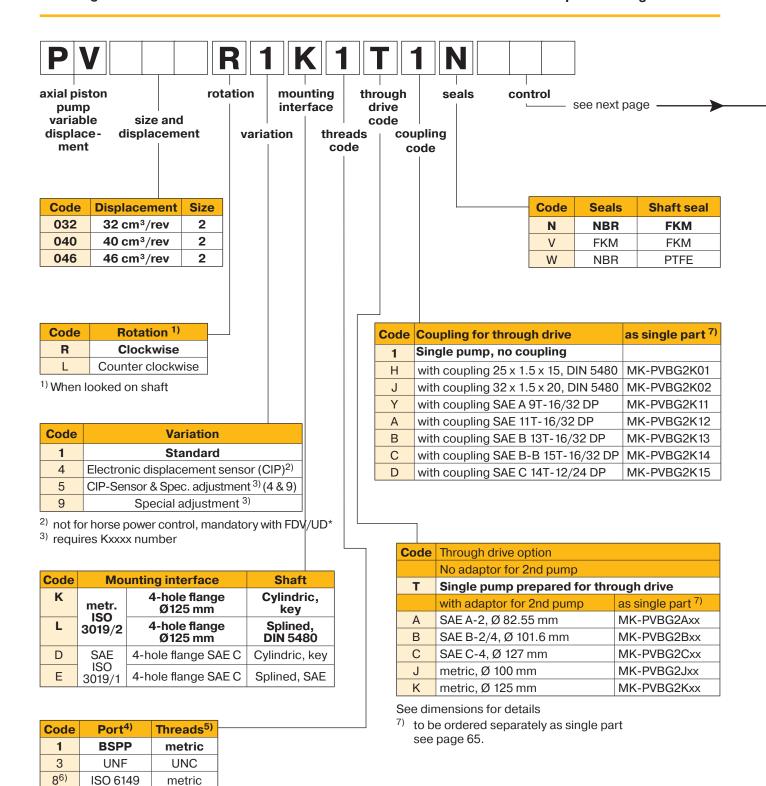
Seals

Checkhydraulic fluid specification for chemical resistance of seal material.

Check temperature range of seal material and compare with max. system and ambient temperature.

-25...+ 90 °C N – Nitrile (FKM shaft seal) -25...+115 °C V - FKM (FKM shaft seal) W - Nitrile (PTFE shaft seal) -30...+ 90 °C

Note: The highest fluid temperature will be at the drain port of the pump, up to 25 °C higher than in the reservoir.



		PV016	PV020	PV023	PV028	PV032	PV040	PV046
Frame size		1	1	1	1	2	2	2
Max. displacement	[cm ³ /rev.]	16	20	23	28	32	40	46
Output flow at 1500 rpm	[l/min]	24	30	34,5	42	48	60	69
Nominal pressure pN	[bar]	350	350	350	350	350	350	350
Min. outlet pressure	[bar]	15	15	15	15	15	15	15
Max. pressure pmax at 20 % working cycle ¹⁾	[bar]	420	420	420	420	420	420	420
Case drain pressure, continuous	[bar]	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Case drain pressure, max. peak	[bar]	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Min. inlet pressure, abs.	[bar]	0.8	0.8	0.8	0.8	0.8	8.0	0.8
Max. inlet pressure	[bar]	16	16	16	16	16	16	16
Input power at 1500 rpm and 350 bar	[kW]	15.9	19.7	22.4	26.9	31.1	38.5	43.8
Max. input torque at 350 bar	[Nm]	94.5	118.1	135.9	165.4	184.3	230.4	265.0
Max speed at 1 bar, abs, inlet pressure	[rpm]	3000	3000	3000	3000	2800	2800	2800
Min. speed	[rpm]	50	50	50	50	50	50	50
Moment of inertia	[kgm ²]	0.0016	0.0016	0.0016	0.0016	0.0047	0.0047	0.0047
Weight	[kg]	19	19	19	19	30	30	30

		PV063	PV080	PV092	PV140	PV180	PV270	PV360
Frame size		3	3	3	4	4	5	6
Max. displacement	[cm ³ /rev.]	63	80	92	140	180	270	360
Output flow at 1500 rpm	[l/min]	94.5	120	138	210	270	405	540
Nominal pressure pN	[bar]	350	350	350	350	350	350	350
Min. outlet pressure	[bar]	15	15	15	15	15	15	15
Max. pressure pmax at 20 % working cycle ¹⁾	[bar]	420	420	420	420	420	420	420
Case drain pressure, continuous	[bar]	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Case drain pressure, max. peak	[bar]	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Min. inlet pressure, abs.	[bar]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Max. inlet pressure	[bar]	16	16	16	16	16	16	16
Input power at 1500 rpm and 350 bar	[kW]	61.3	76.9	87.5	136.1	173.1	259.6	338.7
Max. input torque at 350 bar	[Nm]	365.2	463.7	533.3	812.4	1044.5	1550.5	2067.4
Max speed at 1 bar, abs, inlet pressure	[rpm]	2800	2500	2300	2400	2200	1800	1750
Min. speed	[rpm]	50	50	50	50	50	50	50
Moment of inertia	[kgm ²]	0.018	0.018	0.018	0.030	0.030	0.098	0.103
Weight	[kg]	59	59	59	90	90	172	180

¹⁾ Check adjustment range each compensator.

⁴⁾ Drain and flushing ports

Standard pump is not painted. Black painted pump and ATEX (excludes electronic components) certification (Zone 2) is available as special option. For additional informations please contact Parker Hannifin.

⁵⁾ All mounting and connecting threads

⁶⁾ Mounting interface, code K and L only

\dashv	Code		9	Control options			
	0	0	1	No control			
	1 0 0 With cover plate, no control function (fixed displacement pump)						
	М	М		Standard pressure control			
	М	R		Remote pressure control			
	М	F		Load Sensing (flow) control			
	М	Т		Two spool LS control			
				Control variation			
			С	Standard version, integrated pilot valve 1)			
		1 NG6 interface top side for pilot valves 1)					
			2	Remote pressure port int. supply, NG6 interface 2)			
			3	Remote pressure port ext. supply ²⁾			
			W	With unloading function, 24VDC solenoid 1)			
			K	Proppilot valve type PVACREK35 mounted			
Z Without integrated pilot valve, NG6 interface,							
				for mounting of accessory code PVAC*			
		B Without integrated pilot valve, without NG6 interface 3)					
			Р	MTZ with mounted pilot valve PVAC1P ²⁾			
			F	Proppilot valve PVACRE*35T with OBE mounted, command signal 0 - 10V			
			R	Proppilot valve PVACRE*35T with OBE mounted, command signal 4 - 20 mA			

 $^{^{1)}}$ not for MT & *Z $^{2)}$ only for MT & *Z $^{3)}$ not for MT & MM

			Horse power / T	orque control	
(Code	е			
			Nominal HPat 1.500 rpm	Nominal torque	
D			5.5 kW	35 Nm	
Ε			7.5 kW	50 Nm	
G			11 kW	71 Nm	
Н			15 kW	97 Nm	
K			18.5 kW	120 Nm	
М			22 kW	142 Nm	
S			30 kW	195 Nm	
			Funct	tion	
	L		Horse power control with pressure control 4)		
	С		Horse power control with load sensing (single spool)		
	Z		Horse power control with two spool LS control		
	Control variation				
	C Standard version, integrated pilot valve 1)				
		1	NG 6 interface top side		
		W	With unloading function, 24 VDC so	olenoid	
		K	Proppilot valve type PVACREK35 mounted		
		Z	Without integrated pilot valve, NG6		
			for mounting of accessory code PVAC* 4)		
		В	Without integrated pilot valve, without NG6 interface 1), 4)		
		Р	*ZZ with mounted pilot valve PVAC1P 2)		
		F	Proppilot valve PVACRE*35T with	OBE mounted, command signal 0 - 10V	
		R	Proppilot valve PVACRE*35T with	OBE mounted, command signal 4 - 20 mA	

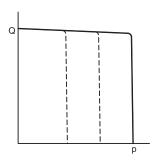
⁴⁾ control variation Z and B without pressure pilot

_									
4	Code		е	Control option					
		Electro hydraulic control ⁵⁾							
	F	D	٧	Proportional displacement control, no pressure compensation					
	U	D		Proportional displacement control, with pressure compensation					
	Control variation								
			R	pilot operated pressure control, open NG6 interface					
			K	pilot operated pressure control, proportional					
l		pilot valve type PVACREK35 mounted							
	M pilot operated pressure control, pressure sensor and								
	proportional pilot valve type PVACREK35 mounted for								
	pressure control and/or power control								

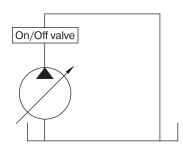
⁵⁾ further info in MSG30-3254

Pressure Controls

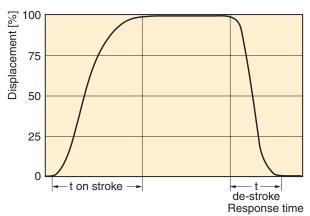
Standard Pressure Control


Control option MMC

The standard pressure control adjusts the pump displacement according to the actual need of flow in the system in order to keep the pressure constant.


Control schematics

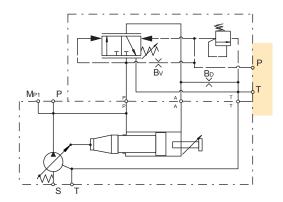
Note: Upgrade to the MRC control by simply removing the ISO 6149 M14x1.5-plug. Thread adapters PVCCK** (last two digits defining seal and thread) are available separately if required. PVCCKN1 for ex. for NBR-sealed and towards G1/4 BSPP. Please consult spares list for all further versions.


Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

	Time on-stroke [ms] Time de-stroke [ms			troke [ms]
	against 50 bar	against 350 bar	zero stroke 50 bar	zero stroke 350 bar
PV360	520	180	120	82

Pressure adjustment range	15 to 420 bar
Factory setting pressure	50 bar
Differential pressure adjustment range	10 to 40 bar
Factory setting differential pressure	15 bar
Control oil consumption	Max 8.0 I/min
Typical pilot flow	approx 1.5 l/min

Dynamic characteristic of flow control *

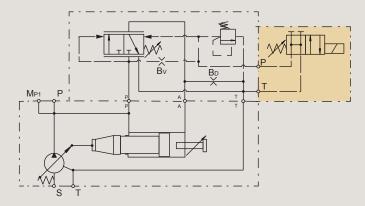

* Curve shown exaggerated

Standard Pressure Control with NG6 Interface

Control option MM1

With code MM1 the standard pressure control has a valve interface size NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

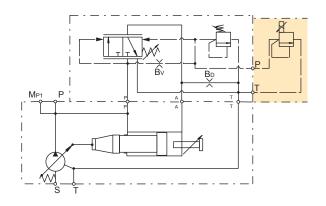


Standard Pressure Control with Electrical Unloading

Control option MMW

With code MMW a solenoid operated directional control valve (D1VW002KNJW) for electrical unloading is mounted on the control top side.

When the solenoid is de-energised, the pump compensates at a stand-by pressure of typically 15 bar. When the solenoid is energised, the pump compensates at the pressure adjusted on the integrated pilot valve.

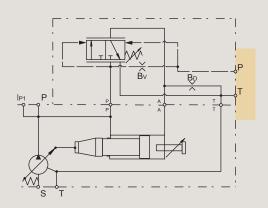


Standard Pressure Control with Proportional Pilot Valve

Control option MMK

With code MMK a proportional pilot valve of type PVACRE... K35 (see page 43) is mounted on the top side interface.

This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

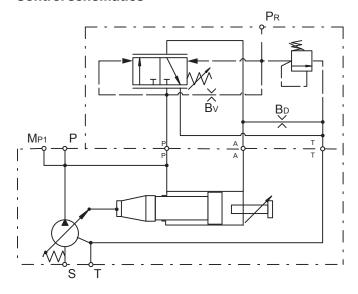

Standard Pressure Control without Integrated Pressure Pilot Valve

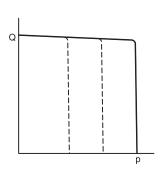
Control option MMZ

Control MMZ has no integrated pilot valve but a valve interface NG6 DIN 24340 on the top.

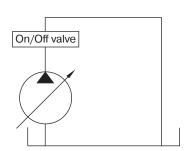
This version is recommended for valve accessories.

For operation at >350 bar please select respective valve accessories (see page 40)

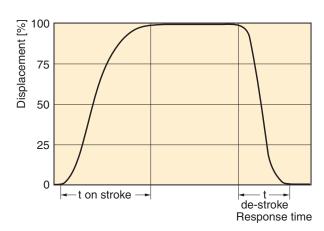

Remote Pressure Control


Control option MRC

The remote pressure control adjusts the pump displacement according to the actual need of flow in the system


in order to keep the pressure constant at a level given by a remotely installed pilot valve.

Control schematics



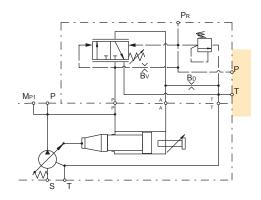
Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

Dynamic characteristic of flow control *

^{*} Curve shown exaggerated

	Time on-s	troke [ms]	Time de-s	troke [ms]
	against 50 bar	against 350 bar	zero stroke 50 bar	zero stroke 350 bar
PV360	520	180	120	82

Pressure adjustment range	15 to 420 bar
Factory setting pressure	50 bar
Differential pressure adjustment range	10 to 40 bar
Factory setting differential pressure	15 bar
Control oil consumption	Max 8.0 I/min
Typical pilot flow	approx 1.5 l/min

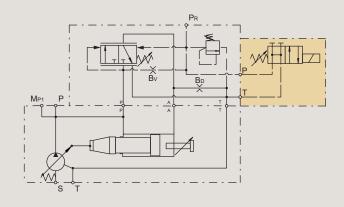


Remote Pressure Control with NG6 Interface

Control option MR1

With code MR1 the remote pressure control has a valve interface size NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

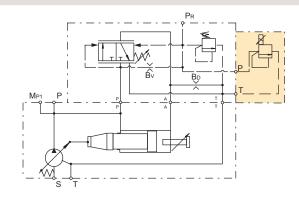


Remote Pressure Control with Electrical Unloading

Control option MRW

With code MRW a solenoid operated directional control valve (D1VW002KNJW) for electrical unloading is mounted on the control top side.

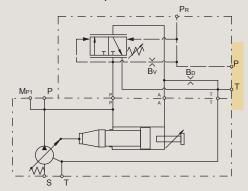
When the solenoid is de-energised, the pump compensates at a stand-by pressure of typically 15 bar. When the solenoid is energised, the pump compensates at the pressure adjusted on the integrated pilot valve.



Remote Pressure Control with Proportional Pilot Valve

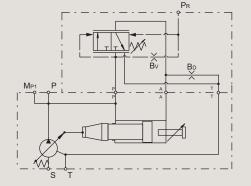
Control option MRK

With code MRK a proportional pilot valve of type PVACRE...K35 (see page 43) is mounted on the top side interface.


This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

Remote Pressure Control without Integrated Pressure Pilot Valve

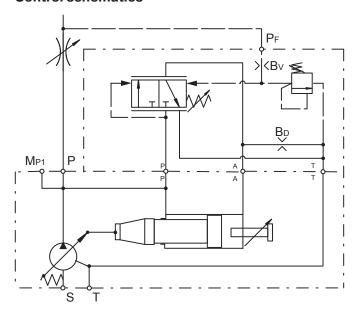
Control option MRZ

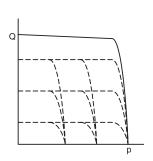

Control MRZ has no integrated pilot valve but a NG6 DIN 24340 interface topside.

This version is recommended for valve accessories.

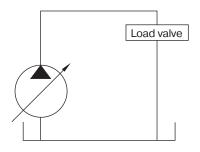
Control option MRB

Control MRB has no integrated pilot valve.

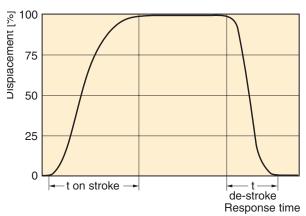

Load Sensing Control


Control option MFC

The pilot pressure of the load sensing control is taken from a load sensing port in the hydraulic system. It is


used to match pump flow to system demands. Integrated pilot valve allows pmax adjustment.

Control schematics

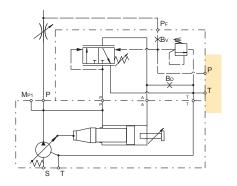

Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

(Time on-s	stroke [ms]	Time de-stroke [ms]		
		stand-by to 50 bar	stand-by to 350 bar	50 bar to stand-by	350 bar to stand-by	
	PV360	500	690	830	50	

Pressure adjustment range	15 to 420 bar
Factory setting pressure	50 bar
Differential pressure adjustment range	10 to 40 bar
Factory setting differential pressure	10 bar
Control oil consumption	Max 8.0 I/min
Typical pilot flow	approx 1.5 l/min

Dynamic characteristic of flow control *

* Curve shown exaggerated

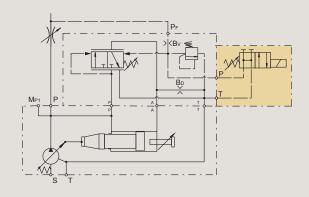


Load Sensing Control with NG6 Interface

Control option MF1

With code MF1 the remote pressure control has a valve interface size NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

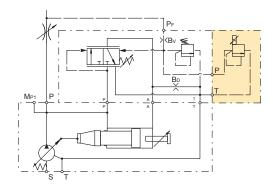


Load Sensing Control with Electrical Unloading

Control option MFW

With code MFW a solenoid operated directional control valve (D1VW002KNJW) for electrical unloading is mounted on the control top side.

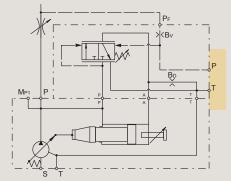
When the solenoid is de-energised, the pump compensates at a stand-by pressure of typically 15 bar. When the solenoid is energised, the pump compensates at the pressure adjusted on the integrated pilot valve.



Load Sensing Control with Proportional Pilot Valve

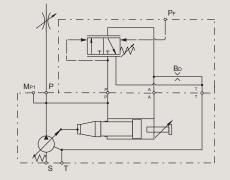
Control option MFK

With code MFK a proportional pilot valve of type PVACRE...K35 (see page 43) is mounted on the top side interface.


This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

Load Sensing Control without Integrated Pressure Pilot Valve

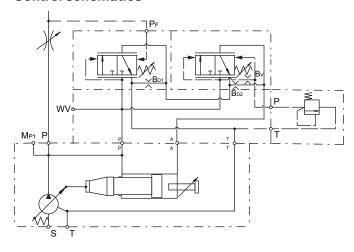
Control option MFZ

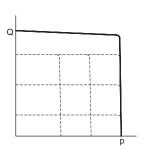

Control MFZ has no integrated pilot valve but a NG6 DIN 24340 interface topside.

This version is recommended for valve accessories.

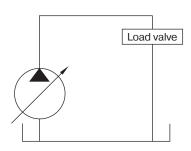
SSURE PILOT VAIVE

Control MFB has no integrated pilot valve.

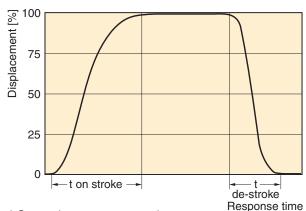

2 Spool Load Sensing Control


Control option MTP

The pilot pressure of the load sensing control is taken from a load sensing port in the hydraulic system. It is used to match pump flow to system demands. With the 2


spool control the interaction of the two control functions is avoided by using two separate control valves for flow and pressure compensation.

Control schematics



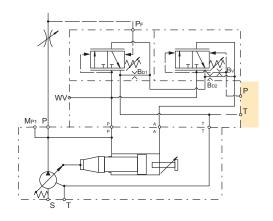
Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

Dynamic characteristic of flow control *

* Curve	shown	exaggerated
---------	-------	-------------

	Time on-s	stroke [ms]	Time de-stroke [ms]			
	stand-by to 50 bar	stand-by to 350 bar	50 bar to stand-by	350 bar to stand-by		
PV360 920		670	1000	170		

Pressure adjustment range	15 to 420 bar		
Factory setting pressure	50 bar		
Differential pressure adjustment range	10 to 40 bar		
Factory setting differential pressure load sensing	10 bar		
Factory setting differential pressure, pressure control	15 bar		
Control oil consumption	Max 8.0 I/min		
Typical pilot flow	approx 1.5 l/min		

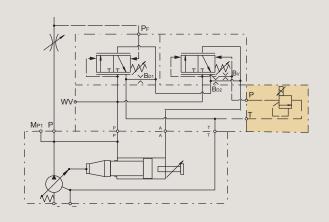

2 Spool Load Sensing Control with NG6 Interface without Integrated Pressure Pilot Valve

Control option MTZ

Control MTZ has no integrated pressure pilot valve but NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

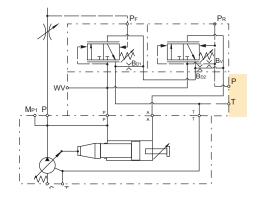
Note: The MT1 control option is not available for new releases as is it identical to the MTZ control.



2 Spool Load Sensing Control with Proportional Pilot Valve

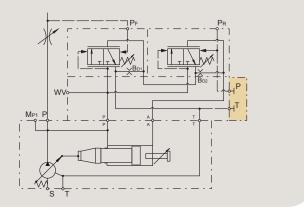
Control option MTK

With code MTK a proportional pilot valve of type PVACRE...K35 (see page 43) is mounted on the top side interface.


This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

2 Spool Load Sensing Control without Integrated Pressure Pilot Valve

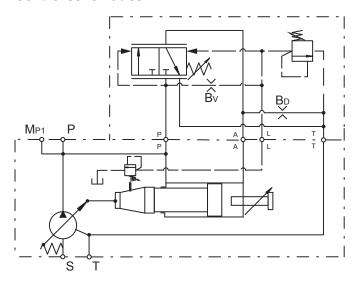
Control option MT2


Control MT2 has a valve interface NG6 DIN 24340 on the top side and remote pressure port internal supply.

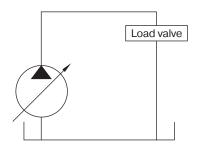
2 Spool Load Sensing Control without Integrated Pressure Pilot Valve

Control option MT3

Control MT3 with pressure remote port external supply. Incl. closed NG6-pad.

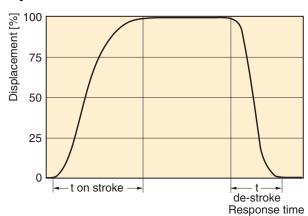

Horse Power/Torque Controls with Pressure Control

Control option *LC


The horse power control type *L* provides the benefit of the pressure control, plus the ability to limit the input power the pump will draw. These controls are beneficial when the power available from the prime mover for the

hydraulics is limited or the application power demand has both high flow/low pressure and low flow/high pressure duty cycles.

Control schematics


Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

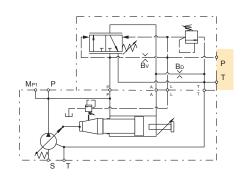
	Time on-s	troke [ms]	Time de-stroke [ms]			
	against 50 bar	against 350 bar	zero stroke 50 bar	zero stroke 350 bar		
PV360	90	90	100	100		

Pressure adjustment range	15 to 350 bar		
Factory setting pressure	350 bar		
Differential pressure adjustment range	10 to 40 bar		
Factory setting differential pressure	15 bar		
Control oil consumption	Max 8.0 I/min		
Typical pilot flow	approx 1.5 l/min		

Dynamic characteristic of flow control *

* Curve shown exaggerated

See Horse Power characteristic curves on page 30

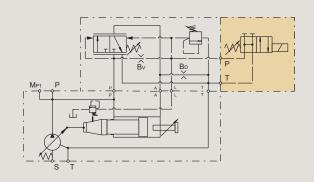


Horse Power/Torque Control with NG6 Interface

Control option *L1

With code *L1 the horse power control has a valve interface size NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

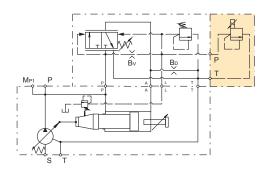


Horse Power/Torque Control with Electrical Unloading

Control option *LW

With code *LW a solenoid operated directional control valve (D1VW002KNJW) for electrical unloading is mounted on the control top side.

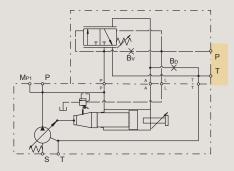
When the solenoid is de-energised, the pump compensates at a stand-by pressure of typically 15 bar. When the solenoid is energised, the pump compensates at the pressure adjusted on the integrated pilot valve.



Horse Power/Torque Control with Proportional Pilot Valve

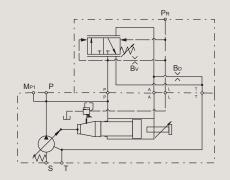
Control option *LK

With code *LK a proportional pilot valve of type PVACRE... K35 (see page 43) is mounted on the top side interface.


This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

Horse Power/Torque Control without Integrated Pressure Pilot Valve

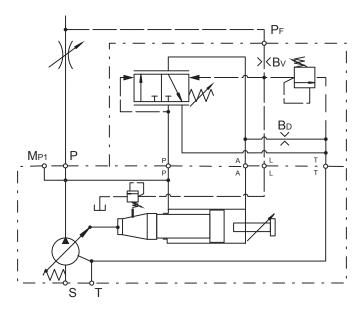
Control option *LZ


Control *LZ has no integrated pilot valve but a NG6 DIN 24340 interface topside.

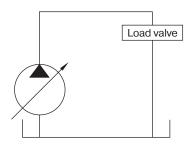
This version is recommended for valve accessories.

Control option *LB

Control *LB has no integrated pilot valve.

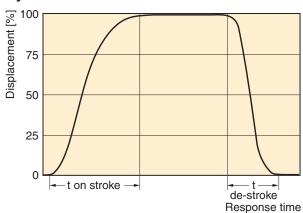


Horse Power/Torque Controls with Load Sensing


Control option *CC

The horse power control type *C* provides the benefit of the load sensing control, plus the ability to limit the input power the pump will draw. These controls are beneficial when the power available from the prime mover for the hydraulics is limited or the application power demand has both high flow/low pressure and low flow/high pressure duty cycles.

Control schematics


Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.

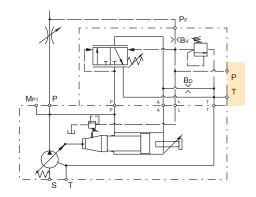
	Time on-s	stroke [ms]	Time de-stroke [ms]			
stand-by to 50 bar		stand-by to 350 bar	50 bar to stand-by	350 bar to stand-by		
PV360	90	90	100	100		

Pressure adjustment range	15 to 350 bar		
Factory setting pressure	350 bar		
Differential pressure adjustment range	10 to 40 bar		
Factory setting differential pressure	15 bar		
Control oil consumption	Max 8.0 I/min		
Typical pilot flow	approx 1.5 l/min		

Dynamic characteristic of flow control *

* Curve shown exaggerated

See Horse Power characteristic curves on page 30

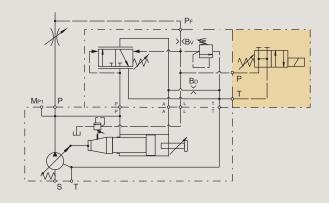


Horse Power/Torque Control with Load Sensing & NG6 Interface

Control option *C1

With code *C1 the horse power control has a valve interface size NG 6 DIN 24340 (CETOP 03 acc. RP35H, NFPA D03) on the top side.

This interface allows the mounting of accessories like multiple pressure selectors without the need of external piping and valve mounting.

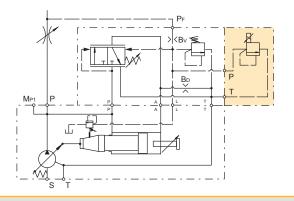


Horse Power/Torque Control with Load Sensing & Electrical Unloading

Control option *CW

With code *CW a solenoid operated directional control valve (D1VW002KNJW) for electrical unloading is mounted on the control top side.

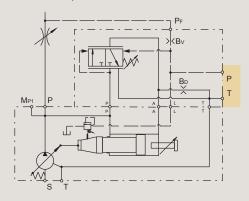
When the solenoid is de-energised, the pump compensates at a stand-by pressure of typically 15 bar. When the solenoid is energised, the pump compensates at the pressure adjusted on the integrated pilot valve.



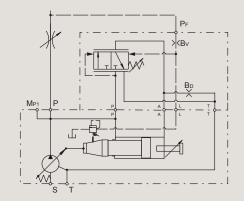
Horse Power/Torque Control with Load Sensing & Proportional Valve

Control option *CK

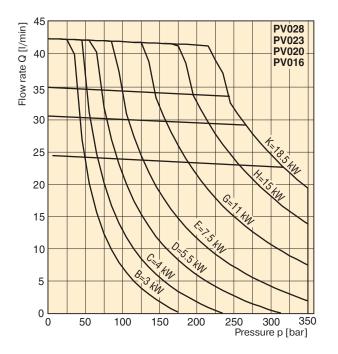
With code *CK a proportional pilot valve of type PVACRE...K35 (see page 43) is mounted on the top side interface.

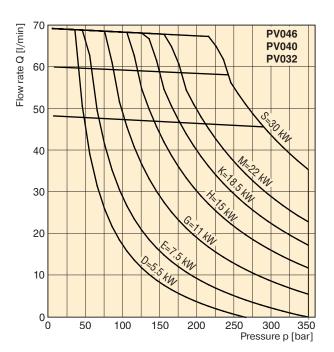

This allows a variation of the pump compensating pressure between 20 and 350 bar by an electrical signal.

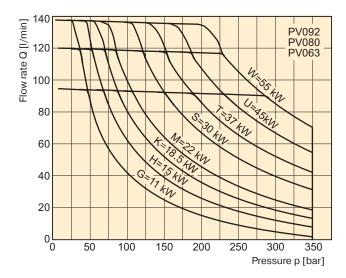
Horse Power/Torque Control with Load Sensing without Integrated Pilot Valve


Control option *CZ

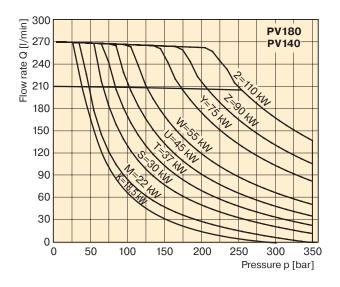
Control *CZ has no integrated pilot valve but NG6 DIN 24340 interface topside.

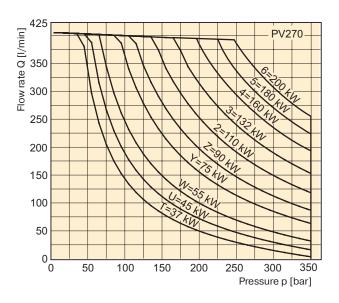


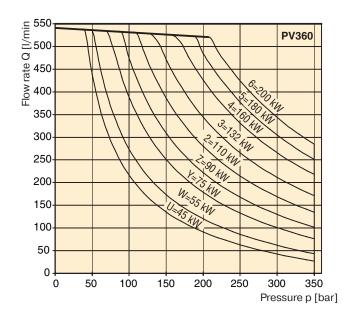

Control option *CB


Control *CB has no integrated pilot valve.

Typical Horse Power/Torque Control Characteristics







Typical Horse Power/Torque Control Characteristics

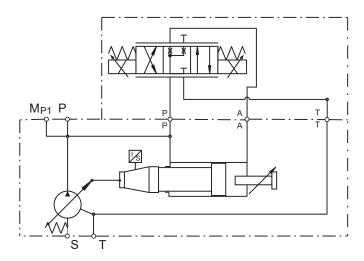
Speed : n = 1500 rev/min

Temperature : $t = 50 \,^{\circ}\text{C}$

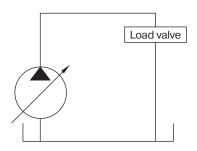
Fluid : HLP, ISO VG46

Viscosity : $v = 46 \text{ mm}^2/\text{s}$ at 40 °C

Pressure : Maximum 350 bar, depending on HP level



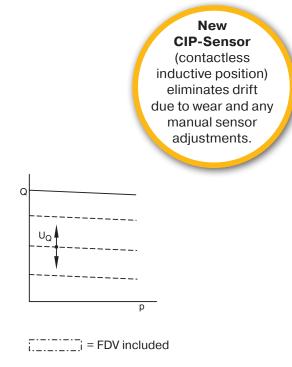
Proportional Displacement Control


Control option FDV

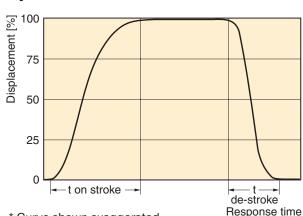
The proportional displacement control allows the adjustment of the pump's output flow by an electrical input signal. The actual displacement of the pump is monitored by an electronic displacement sensor and compared with the commanded displacement in an electronic control module PQDXXA-Z10. The command is given as an electrical input signal (0 – 10 V alternatively 4 – 20 mA) from the supervising machine control or a potentiometer.

Control schematics

Response times of the pump are collected from a circuit as below by measuring the pumps swash angle movement at different pressures.



	Time on-s	troke [ms]	Time de-stroke [ms]			
	stand-by to 50 bar	stand-by to 350 bar	50 bar to stand-by	350 bar to stand-by		
PV360	255	154	266	183		


Pressure adjustment range*	35 to 350 bar
Differential pressure adjustment range *	10 to 40 bar
Factory setting differential pressure *	15 bar
Control oil consumption (FDV only)	Max 0.3 I/min

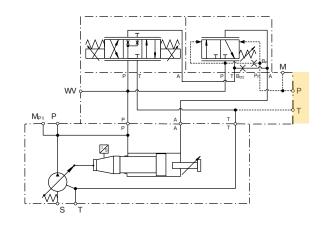
^{*} Data valid for UD* version

Version FDV of the proportional control does not provide pressure compensation. Therefore the hydraulic circuit must be protected by a pressure relief valve.

Dynamic characteristic of flow control *

* Curve shown exaggerated

Internal pilot pressure required to control the pum								
FDV	15 bar							
UDR	25 bar							
UDK	25 bar							
UDM	25 bar							

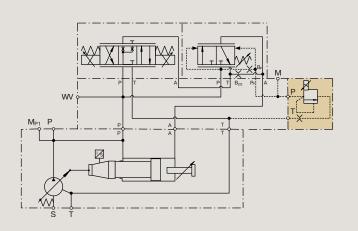


Proportional Displacement Control with Overriding Pressure Control

Control option UDR without pressure relief pilot valve

Control version UDR provides electro-hydraulic displacement control and pressure stage mounted on an elbow manifold.

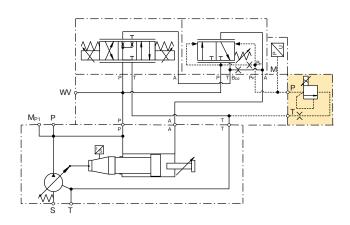
The elbow manifold provides NG6/D03 interface on top to mount a pressure pilot valve (not included in UDR).

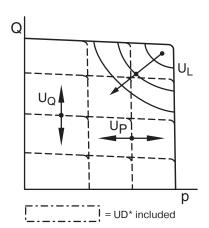


Proportional Displacement Control with Proportional Pressure Control

Control option UDK

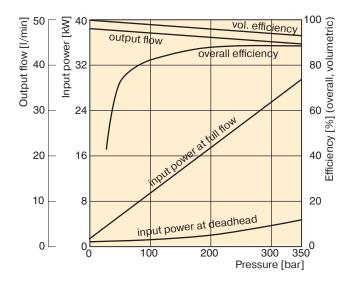
Control version UDK features proportional pressure pilot valve PVACRE...K35, which enables for electro-hydraulic p/Q control.

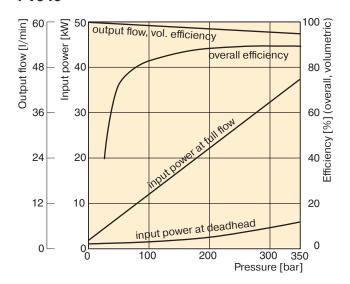

By using the digital module PQDXXA-Z10 it is possible to control the displacement proportionally with overriding open loop proportional pressure control.

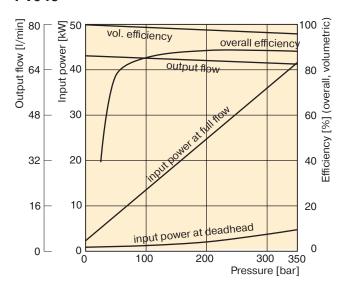


Proportional Displacement Control with Closed Loop Pressure Control

Control option UDM

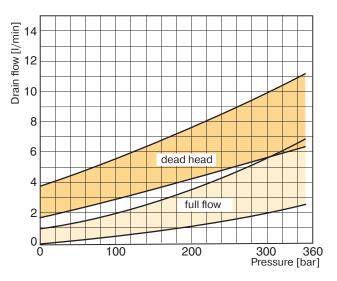

Control version UDM includes pressure transducer Parker SCP 8181 CE. In combination with control module PQDXXA-Z10 both closed loop pressure control as well as electronic power limitation can be realized.



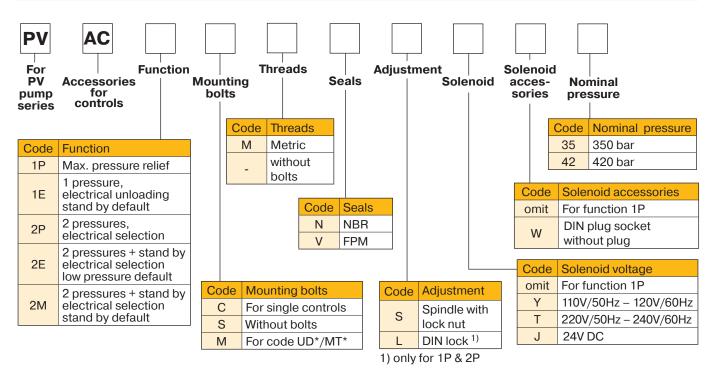

Efficiency, power consumption PV032

PV040

PV046

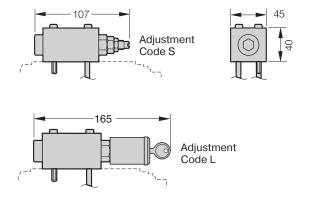

Efficiency and case drain flows PV032 to PV046

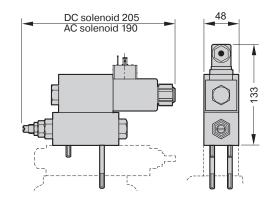
The efficiency and power graphs are measured at an input speed of n = 1500 rpm, a temperature of 50 °C and a fluid viscosity of $30 \text{ mm}^2/\text{s}$.


Case drain flow and compensator control flow leave via the drain port of the pump. To the values shown are to be added 1 to 1.2 l/min, if at pilot operated compensators the control flow of the pressure pilot valve also goes through the pump.

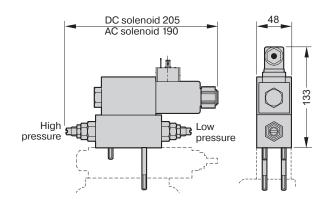
Please note: The values shown below are only valid for static operation. Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port. This dynamic control flow can reach up to 60 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.

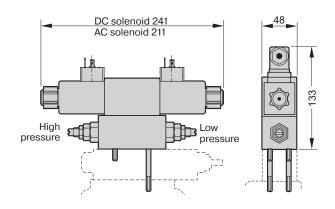
Case drain flow PV032-046 with pressure compensator



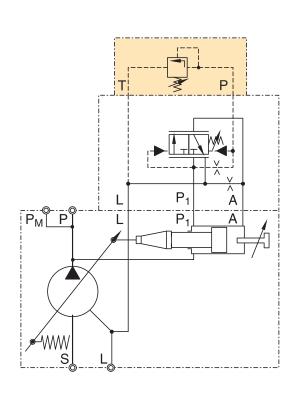

Warning: Risk of damaging bolt holes! Prior design series will need UNC bolts for pumps with threadcode "3".

Dimensions

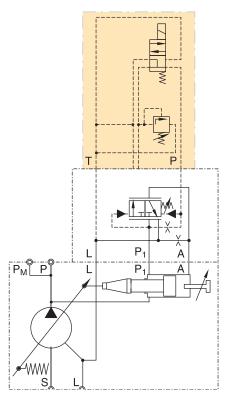


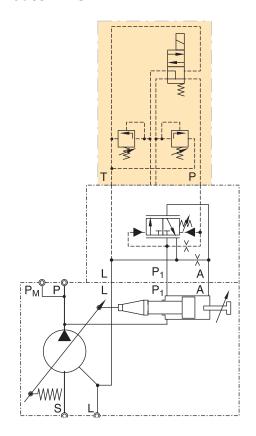

PVAC1E*

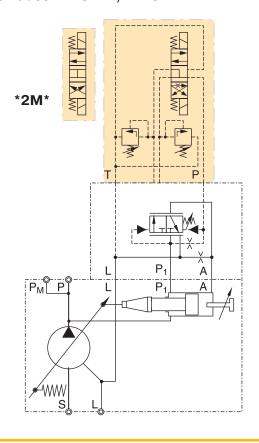
PVAC2P*



PVAC2M*/PVAC2E*

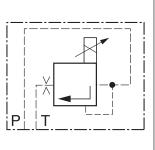


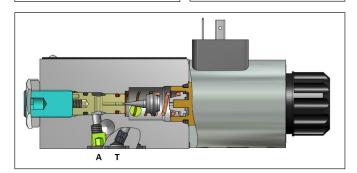

Schematics PVAC1P*


Schematics PVAC1E*

Schematics PVAC2P*

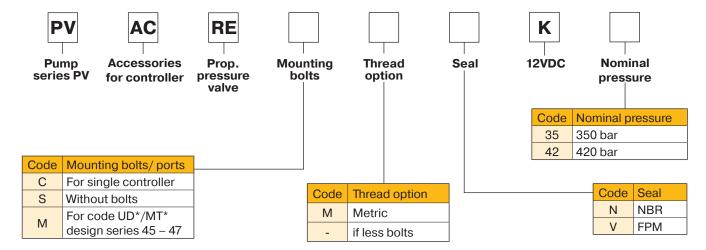
Schematics PVAC2M*/PVAC2E*


Proportional pressure relief valve PVACRE*


The pressure relief valve PVACRE* is a direct operated proportional valve, which is typically used for a remote pressure control.

Function

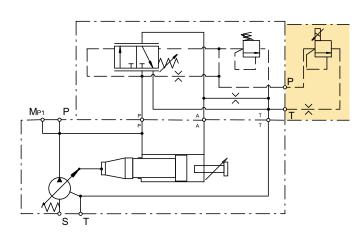
When the pressure in port P exceeds the pressure setting at the solenoid, the cone opens to port T and limits the pressure in port P to the adjusted level. The optimum performance can be a chieved in combination with the digital amplifier module PCD00A-400.



Technical data

General		
Nominal size		DIN NG06 / CETOP03 / NFPA D03
Mounting position		as desired, horizontal mounting preferred
Ambient temperature	[°C]	-20 +70
Weight	[kg]	1.8
Hydraulic		
Max. operating pressure	[bar]	Port P up to 420; port T depressurized
Pressure stages	[bar]	350, 420
Fluid		Hydraulic oil as per DIN 51524 525
Viscosity, recommended permitted	[cSt]/ [mm²/s] [cSt]/ [mm²/s]	
Fluid temperature	[°C]	-20 +60
Filtration		ISO 4406 (1999), 18/16/13
Linearity	[%]	±4
Repeatability	[%]	±2
Hysteresis	[%]	±4.5 of p _{max}
Electrical		
Duty ratio	[%]	100 ED
Protection class		IP 65 in accordance with EN 60529 (plugged and mounted)
Nominal voltage	[V]	12 (2.2 A for nominal pressure)
Coil resistance	[Ohm]	4.4 at 20°C
Solenoid connection		Connector as per EN 175301-803
Power amplifier, recommended		PCD00A-400 (open loop – NO sensor), PWDXXA-400 (closed loop – with pressure sensor)
Recommended dither frequency	[Hz]	60
Recommended dither amplitude	[%]	4

Ordering code proportional pressure relief valve



Warning:

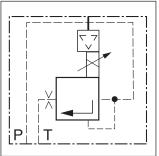

Risk of damaging bolt holes! Prior design series will need UNC bolts for pumps with threadcode "3".

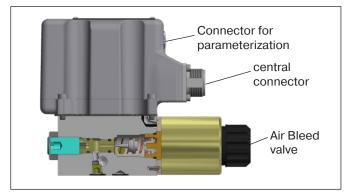
Schematic PVACRE*

Example for PVACRE* mounted

Dimensions PVACRE*

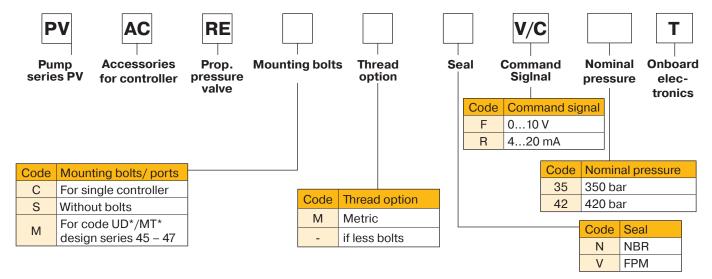
Proportional pressure relief valve with OBE PVACRE*T


The direct operated proportional pressure valves of the RE06M*T series with integrated electronics are based on the functionality of the PVACRE series. The digital onboard electronic are securely housed in a robust metal box and can also be used under harsh ambient conditions. The set valve parameters have been specially tuned to the PVplus pump series.


Valve parameters can be adjusted and diagnostic valves displayed by using the ProPxD software and the optionally available parameterization cable.

Function

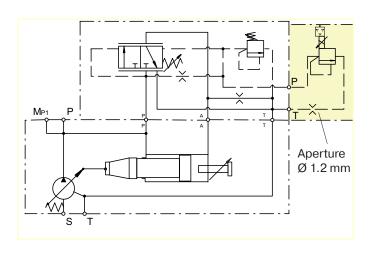
When the pressure in port P exceeds the pressure setting at the solenoid, the cone opens to port T and limits the pressure in port P to the adjusted level.



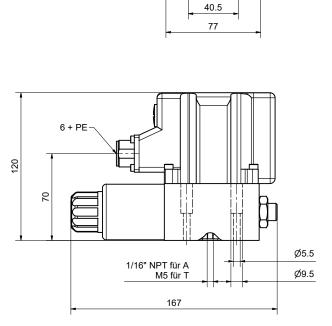
Technical data

General		
Nominal size		DIN NG06 / CETOP03 / NFPA D03
Mounting position		as desired, horizontal mounting preferred
Ambient temperature	[°C]	-20 +70
Weight	[kg]	2.2
Hydraulic		
Max. operating pressure	[bar]	Port P up to 420; port T depressurized
Pressure stages	[bar]	350, 420
Fluid		Hydraulic oil as per DIN 51524 525
Viscosity, recommended permitted	[cSt]/ [mm²/s] [cSt]/ [mm²/s]	
Fluid temperature	[°C]	-20 +60
Filtration		ISO 4406 (1999), 18/16/13
Linearity	[%]	±4
Repeatability	[%]	±2
Hysteresis	[%]	±4.5 of p _{max}
Electrical		
Duty ratio	[%]	100 ED
Protection class		IP 65 in accordance with EN 60529 (plugged and mounted)
Nominal voltage	[V]	18 30 (2 A for nominal pressure)
Coil resistance	[Ohm]	4.4 at 20°C
Solenoid connection		Connector as per EN 175301-803

Ordering code proportional pressure relief valve with OBE



Warning:


Risk of damaging bolt holes! Prior design series will need UNC bolts for pumps with threadcode "3".

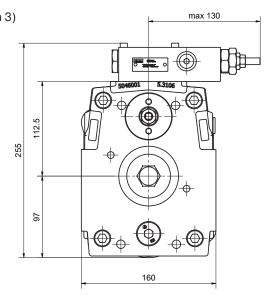
Schematic PVACRE*T

Example for PVACRE* T mounted

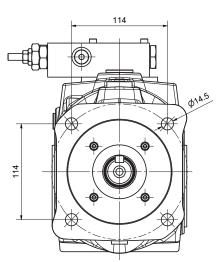
Dimensions PVACRE*T

PV032-046, metric version

Interface for power pilot cartridge or CIP Sensor for displacement feedback

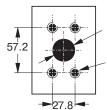

ISO 6149-1 (thread options 8) or 1 1/16"-12 UNF (thread option 3) displacement feedback

36.5


Thread for transport:

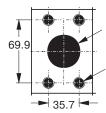
M8x1.25; 13 deep

Drain port L1; G3/4" optional M27 x 2;


Gage port M; ISO 6149-1 M14x1.5 (for any thread option) Key 10 x 8 x 56 **DIN 6885** 7 09 35 Thread M10, 22 deep 20 Bearing flushing port L4; G1/4" (thread options 1) optional M12 x 1.5; ISO 6149-1 12.5 (thread options 8) Drain ports 138 or 7/16" - 20 UNF L2 and L3 185 (thread options 3) (opposite); 197 G3/4"

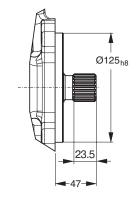
The pump shown above has **Mounting option K** and **through drive variation T** (prepared for through drive)

optional M27 x 2: ISO 6149-1


(thread options 8) or 1 1/16" - 12 UNF (thread option 3)

OUTLET for metric and SAE version:

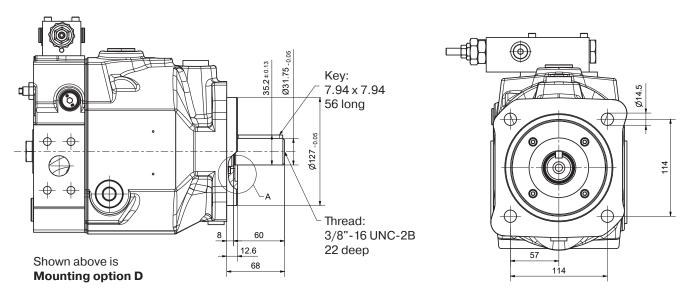
flange acc. ISO 6162 DN25; PN400

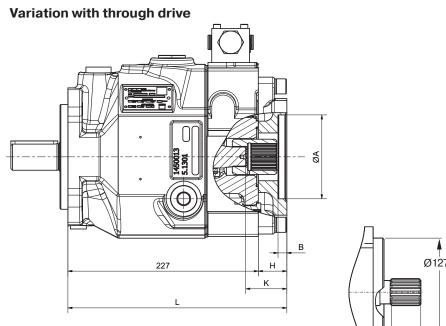

4 x M12, 18 deep optional 7/16"-14 UNC-2B (thread options 3)

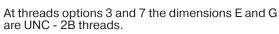
INLET for metric and SAE version:

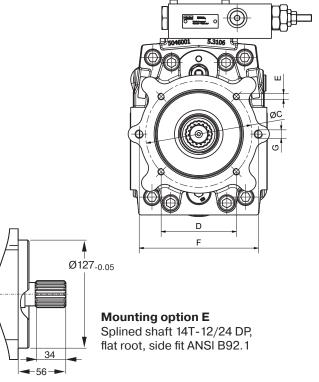
flange acc. ISO 6162 DN38; PN200

4 x M12, 18 deep optional 1/2"-13 UNC-2B (thread options 3)

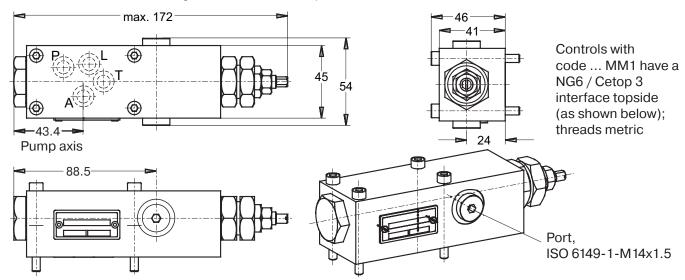


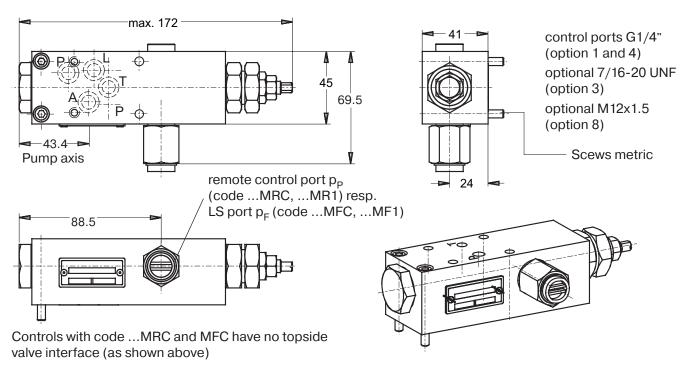

Mounting optional L splined shaft W32x1.5x20x8f DIN 5480

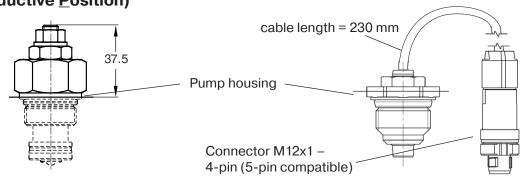

Shown is a clockwise rotating pump with standard pressure compensator. Counter clockwise rotating pumps have inlet, outlet and gage port reversed.



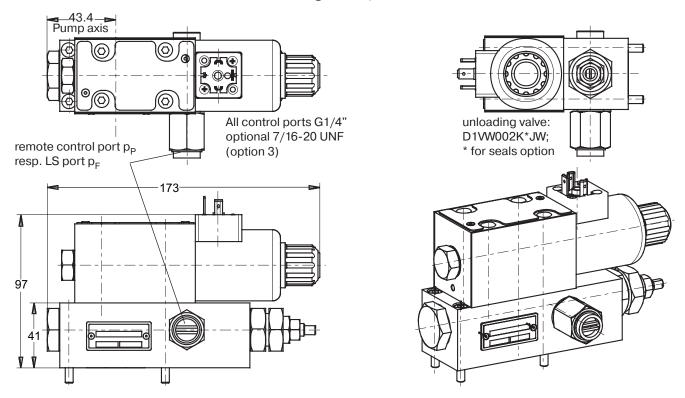
PV032-046, SAE version



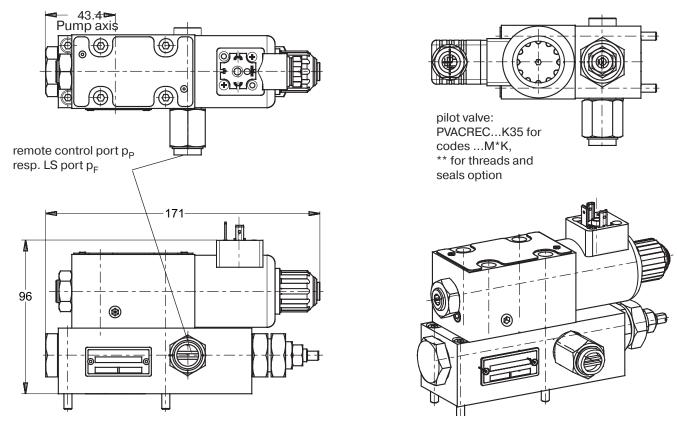

Through drive adaptors are available with the following dimensions											
Drawing Dimension Through drive option	А	В	С	D	Е	F	G	Н	К	L	Remark
А	82.55	8	-	-	-	106	M10	34	48	261	SAE A 2-Bolt
В	101.6	11	127	89.8	M12	146	M12	34	48	261	SAE B 2/4-Bolt
С	127	13.5	162	114.6	M12	-	-	49	63	276	SAE C 4-Bolt
J	100	10.5	125	88.4	M10	140	M12	34	48	261	2/4-Bolt
К	125	10.5	160	113.1	M12	-	-	34	48	261	4-Bolt


Dimensions standard pressure control, code ...MMC

Dimensions remote pressure and load sensing control, codes ...MR1, ...MF1



Dimensions horse power pilot cartridge, displacement sensor (<u>C</u>ontactless <u>Inductive Position</u>)



Dimensions for controls with unloading valve, codes ... M*W

Shown in version MRW/MFW, version MMW has no remote control port.

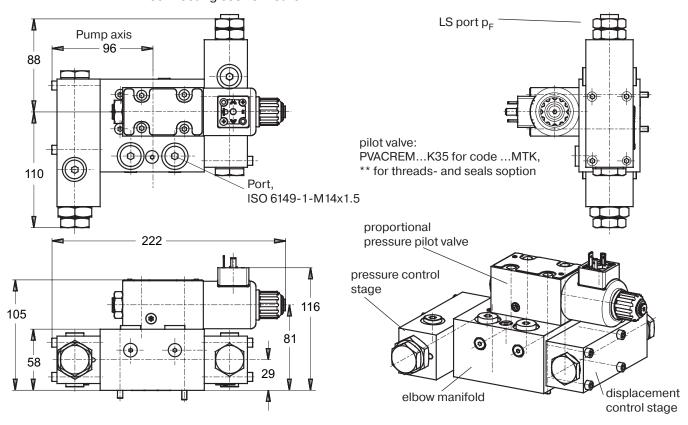
Dimensions for controls with proportional pressure pilot valve, codes ...M*K

Shown in version MRK/MFK, version MMK has no remote control port. Dimensions for horse power compensator *L* and *C* are identical to MM* respectively MF*.

displacement

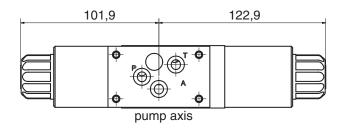
control stage

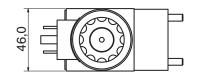
Dimensions two spool load sensing control, code ...MT1, ...MTP

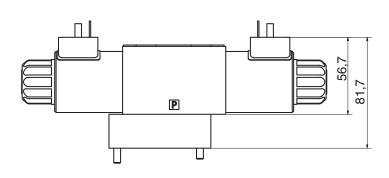

All connecting scews metric LS port p_F -Pump axis -96 88 • pressure pilot valve 110 PVAC1PC**S35 (code ...MTP only) Port. ISO 6149-1-M14x1.5 191 pressure control stage 104 80.5 58

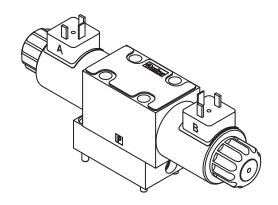
elbow manifold

Dimensions two spool load sensing control with proportional pressure pilot valve,

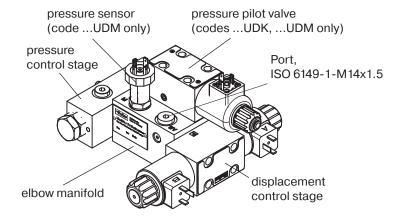

code ...**MTK** – All connecting scews metric

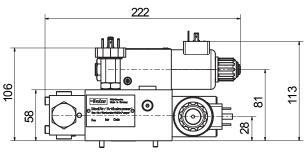

Shown version MTP



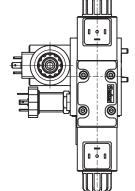


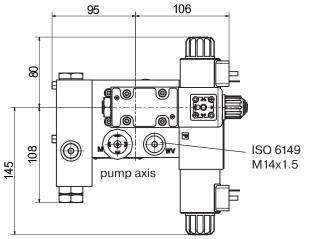
Dimensions proportional displacement control, code ...FDV – All connecting scews metric





Dimensions proportional p/Q-control, codes ...UDR, ...UDK, ...UDM


All connecting scews metric

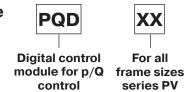


PVACREM...K35 for code ...UDK, UDM
** for threads- and seals option

Electronic Module PQDX

Features

- · Digital control circuit
- Covers all displacements
- Covers all available functions (pressure, displacement, power)
- Predefined parameter sets (Plug & Play)
- · Connection via USB cable (USB-A/USB-B)
- · Ramp time up to 60 seconds
- Compliant to the relevant european EMC specifications
- · Offline editing of parameter sets
- · Error diagnosis
- Easy hands on control tuning due to online monitoring of PID gains
- All settings (ramps, MIN/MAX, control parameters) can be stored digitally and recalled from a PC to duplicate settings to other modules



Technical data

Mounting style		Snap-on mounting for EN50022 rail	
Body material		Polycarbonate	
Inflammation class		V2V0 acc. UL 94	
Mounting position		any	
Env. temperature range	[°C]	-20+55	
Protection class		IP 20 acc. DIN 40 050	
Weight	[g]	260	
Duty ratio	[%]	100	
Supply voltage	[V]	1830 VDC, ripple <5 % eff.	
Rush in current	[A]	22 for 0.2 ms	
Current consumption	[A]	< 4 for p/Q control; < 2 for Q-control	
Resolution Input Command	[%]	0.025 (power 0.1)	
Interface		USB-Typ B	
EMC		EN 50 081-2, EN 50 082-2	
Connctors		Screw terminals 0.22.5 mm², plug in style	
Cables	[mm²]		
		Sensor and command signals; 0.5 mm ² (AWG20) overall braid shield	
Max. cable length	[m]	50	

For programming the module via PC an interface cable is needed, please order part number PQDXXA-ZXX-KABEL separately.

Ordering code

downward compatible * Z00

Programming software

The programming of the p/Q control module is done in an easy to learn mode. To select the pump model and size and to set the control parameters the program ProPVplus must be started. The program runs under common windows systems.

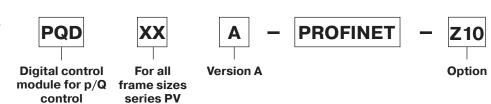
Latest software available at: www.parker.com/pmde

Features

- Display and documentation of parameter sets
- · Save and reload of optimized parameter sets
- Offers oscilloscope function for easy performance evaluation and optimization
- Parameter sets for all PVplus pumps are pre-installed in the modules

Features

- Control, monitor and parameter setting via Profinet ® interface
- Covers all displacements and controls (pressure, displacement, power)
- Quick and easy integration with available GSDML and predefined and online available function blocks for I/ Os as well as parametrization
- Full integration into overlaying machine control (PLC + HMI) Process parameter, Static Parameter, Conditions
- · Predefined data sets for Plug&Play commissioning
- · Quick and easy wiring with Push in contact blocks
- · Switch function with two RJ45 ports
- Alternative Connection via USB cable (USB-A/USB-B)
- Compatible to the relevant european EMC specification
- · Certified by Profibus User Organisation
- · Easy error diagnosis



Technical data

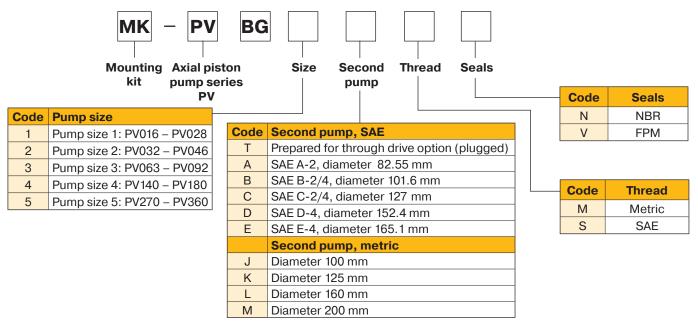
Mounting style		Snap-on mounting for EN50022
Body material		Polyamide PA6.6
Inflammation class		V0 acc. UL 94
Mounting position		any
Env. temperature range	[°C]	-20+55
Protection class		IP 20 acc. DIN 40 050
Weight	[g]	260
Duty ratio	[%]	100
Supply voltage	[V]	1830 VDC, ripple <5 % eff.
Rush in current	[A]	22 for 0.2 ms
Current consumption	[A]	< 4 for p/Q control; < 2 for Q-control
Resolution Input Command	[%]	0.025 (power 0.1)
Interface		2 x RJ45, USB-B
EMC		EN61000-6-2: 2005 (Immunity), EN61000-6-3: 2007 +A1: 2010 (Emission)
Connectors		Push in terminals 0.22.5 mm ² , plug in style
Cables	[mm ²]	Supply and solenoid cables; 1.5 mm ² (AWG16) overall braid shield.
		Sensor and command signals; 0.5 mm ² (AWG20) overall braid shield
Max. cable length	[m]	50

Further information at bulletin MSG30-3256-INST/UK

Ordering code

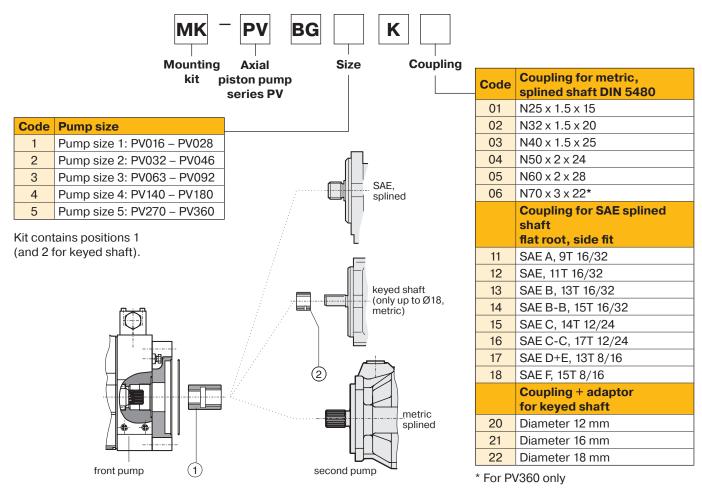
Programming software

The programming of the p/Q control module is done in an easy to learn mode. To select the pump model and size and to set the control parameters the program ProPVplus must be started. The program runs under common windows systems.


Latest software available at: www.parker.com/pmde

Features

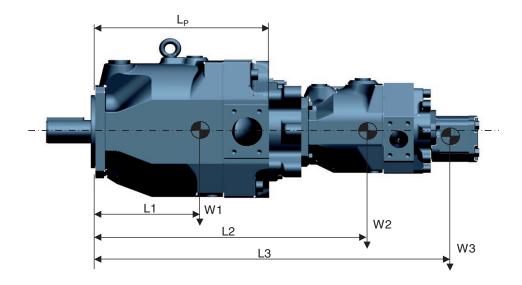
- · Display and documentation of parameter sets
- Save and reload of optimized parameter sets
- Offers oscilloscope function for easy performance evaluation and optimization
- Parameter sets for all PVplus pumps are pre-installed in the modules



Mounting kits for multiple pumps, for second pump option

Kit contains positions 30, 69, 84, 85 and 87, see spare part list

Mounting kits for multiple pumps, couplings


Availability of through drive flange and coupling please check with ordering code options per each pump size, starting at page 6

Multiple Pump Combinations – Maximum Moment

Combinations of multiple pumps might require additional pump support to avoid high stress on the front mounting flange. Combinations of two PVplus pumps in the same frame size generally do not need additional support in an industrial application. For combinations of more pumps support is required.

In case of combinations of a PVplus pump with another type of pump it is recommended to calculate the moment for the combination and compare with the maximum moment in table 1 below.

Moment M = (L1*W1 + L2*W2 + L3*W3 +...)

Note: If the calculated moment M exceed the maximum moment in table 1 below, additional pump support is needed

Table 1: Maximum Moment and Pump Dimensions

		PV016-PV028	PV032-PV046	PV063-PV092	PV140-PV180	PV270	PV360
Maximum moment 1)	[Nm]	81	151	401	591	1686	1686
Weight W	[N]	186	294	589	883	1687	1766
Distance L1	[mm to C/G]	106	119	178	184	234	238
Distance Lp	[mm]	197.5	227	287	350	472.5	477

 $^{^{1)}}$ at dynamic weight acceleration $10g = 98.1 \text{ m/sec}^2$

Table 2 Through Drive Adapter Plate Thickness [mm]

Adapter option ²⁾	PV016-PV028	PV032-PV046	PV063-PV092	PV140-PV180	PV270	PV360
А	27	34	39	65	59	59
В	27	34	39	65	59	59
С	-	49	39	65	59	59
D	-	-	64	65	59	59
Е	-	-	-	-	59	59
G	27	34	39	-	-	-
J	27	34	39	65	59	59
K	-	34	39	65	59	59
L	-	-	39	65	59	59
М	-	-	-	-	59	59

²⁾ See page 6 to 17 for reference per each frame size.

Maximum allowed transferable torque FRONT								
Shaft	Shaft	Transferable torque at FRONT shaft end. [Nm]						
code	type	PV016-028	PV032- 046	PV063- 092	PV140-180	PV270	PV360	
D	SAE - Key	300	650	1850	2150	2150	4750	
E	SAE - Spline	320	630	1700	2750	2800	8100*	
F	SAE - Key				1200			
G	SAE - Spline				1700			
R	Metric - Key						3750	
Т	Metric - Spline						8100	
K	Metric - Key	280	640	1200	1550	3300	3750	
L	Metric - Spline	320	720	1500	3050	5750	8100	
Maximum allowed transferable torque REAR								
cap.	rque transmission mounted pump	350	520	1100	1550	3150	3250	

^{*} DIN5480 splined

Important notice:

The max. allowable torque of the individual shaft must not be exceeded. For 2-pump combinations there is no problem because PV series offers 100 % through torque. For 3-pump combinations (and more) the limit torque could be reached or exceeded.

Therefore it is necessary to calculate the resulting input as well as through drive torque.

